Lecture 2

2. Multiple Systems

We can encode information in large single

systems

We can encode intermation in lange of systems

2) But its often more convenient to consider collections of small systems.

Again re start from classical systems

O Classical information / classical state sets
Suppose he have X with & BY with T.

What are its classical states?

Answer: Classical state set of (X, Y) (2) is the Cartesian product of EBM $L = \frac{2}{2}(a,b) : a \in \Sigma * b \in \Gamma$ If we say (X,Y) is in (a,b) E & x r we men X is in a B Y is in b. For more than two systems we can generalize straightforwardly... Given X,..., Xn with E,,..., En the classical state set of (X,..., Xn) is $\{x_1, x_2, x_3\} = \{a_1, ..., a_n\} | a_1 \in \{x_1, ..., a_n \in \{x_n\}\}$

String representation of states State (a, \ldots, a_n) via $a, a_2 \ldots a_n$.

Example: bits (of course) 6 consider X,,..., X10 with

states of Unjoint system E E, x x E, 0 = 20,13

length 10 strings using the Sinary alphabet! 000000000 20 states

In general of a have an alphabet $2a_1, \ldots, a_n \geq then 2a_1, \ldots a_n \geq then$ has no states. Les make sure you inclusted !

Chrs. Probabilistic States 2) A probabilistic state of a joint system assigns a probability to each possible joint state Example: XBY are bits S = C = 50,13 Pr((X,Y) = 00) = 1/2 Pr((X,Y) = 01) = 0Note XBY

are "correlated") by they always agree a Ps ((x,4) = 10) = 0 Pr ((x, y) = 11) = 1/2

Ordering Cartesian products I Just as in single systems re represent produblistic states as vectors with an entry for each element of the state set. Li But we have to impose an For cartesian products there is a convention! this is called "alphabetical ordering" ! 5 , 6

So, lets consider the system (X_1, X_2) with $\mathcal{L}_1 = \mathcal{E}_2 = 20,13$ Lo state of the system is a probability vector VER22 $\begin{cases} V_2 & \longrightarrow 00 \\ 0 & \longrightarrow 01 \\ 0 & \longrightarrow 10 \\ 0 & \longrightarrow 10 \end{cases}$ NB -> we will work with Sitstrings a lot.

2 chech you know 20,12^m

Independence of two systems Is We say that the systems within a state of two systems are independent it learning something about the one yields no information about the other. Lo lets be precise... Lu Given X & Y with & & The say X & Y are independent if

 $Pr((X,Y) = ab) = [Pr(X=a)] \times [Pr(Y=b)]$ for all $ab \in \mathcal{E} \times \Gamma$.

We can rephrase this in terms of probability vectors... Lo Assume (X, Y) is in the state 127 with IV) = Sipablab) X B Y are independent if 3

 $|\phi\rangle = \sum_{a \in \Sigma} q_a |a\rangle = |A\rangle = \sum_{b \in \Gamma} r_b |b\rangle$ $= \sum_{a \in \Sigma} q_a |a\rangle = \sum_{b \in \Gamma} r_b |b\rangle$ Such that $p_{ab} = q_a r_b$

20

Examples • (X,Y) with $S = \Gamma = 30,13$ 2, 1v7 = 1/2 (00) + 1/2 (01) + 1/2 (10) + 1/2 (11) L) XB 4 are independent because 00 1/2 1/2 1/6 107 = 4107 + 34117 01/4/3/12 14) = 3/07 + 1/3/17 Satisfies Un condition!

But for 17- 2100> +12111> the systems

ax not independent!

3) Suppose they were independent

2) either 90=0 or (=0

(otherwise Poi #0)

L) but then either poo or pin = 0

L) but this is not the case!

We have defined independent systems (10) Which is not independent. Tensor products of vectors 2, This notion will help us significantly. Defn: Gin 10) = & dala) 0 14) = & By 16) aGE SEN the tensor product is 1\$7\$ 147 = & xaBblab).

Equivalently, $|\Pi\rangle = |\phi\rangle\otimes|nt\rangle$ is defined via $\langle ab|\Pi\rangle = \langle a|\phi\rangle\langle b|\gamma\rangle$

YaeE, ber.

We now have an easy definition of independence... L(X, Y) is an independent system if the joint vector ITT 10 a tensor product of productos fer XBY, 2, 12 if ITT = (\$70 14) Le call ITT? a product state Notation 2, re often use 10>147 for 10>014>

Bessentially always We also use alphabetical ordering for tensor products of column vectors

Branot, that

The lensor product is bilinear Olinearity in first argument 6 (10,7 + 10,2) @147 = 10,7147+10,214) (al\$) & 14) = a 1\$>14> D linewity in second agriment 1078 (14,7+1427) = 107 |4,7+107) /2) 1078 (x147) = 2107 |47 (LIP) (2/4) = 14/8(LIM) = L/8/14)

Properties of the tensor product

Independence B tensor products for mon than two systems We can generalize straightforwardly

Given X, ... Xn B E, -- En the

joint state 147 is a product state 147=10,78 01pn> defined via (a,...an (4) = (a, |4,).. (an 19n) recursively via $| \phi_{n} \rangle \otimes \otimes | \phi_{n} \rangle = (| \phi_{n} \rangle \times | \phi_{n-1} \rangle) \otimes | \phi_{n} \rangle$ & now its multilinear $|a_1\rangle \otimes \otimes |a_n\rangle = |a_1...a_n\rangle = |a_1,...,a_n\rangle$

Measurements of probabilistic states Lister view a joint system as a single system then measurement is easy - se already know how. C, Example (X, Y) in state 1747 = 1/2 (100) + 1/2 (111)

Outcome | Probability

Outcome | Probability

V2

Oi

10

11

V2

once ve see an outcome ve an in the corresponding basis state.

Partial measurements 2. There is something now here! 2, he can choose to measure only
part of a joint system! L) he will get an outcome for each measured system & our knowledge of emaining Systems will be effected! Simple case: Two systems B n measur only one 2, XBY with ExT 2, measur X

of course the probability to see a EE must be the same as if in had measured both systems $L P_r(X=a) = E P_r((X,Y)=(a,b))$ marginal formula for x
(marginalize ow Y) intuitive sense 2, pobabilities reflector belief about som definite state of the system.

Now, we have to update our description of B

Y given what we learned about X

Pr(Y=J|X=a) = Pr((X,Y)=(a,J))

Conditional probability

Pr(X=a) = E pob ber 2. reduced stak of X is

147 = E (E Pac) la)

In terms of prolability rectors...

if we obtain outcome a GE when we measure x, then probabilistic state of Y is updated via ITa> = & pab 16> Scar Pac] Pr(x=a) -So, if re measur X & sez a & & the updated joint state of the system is 147 = (a) Oltta> We can think of this factor as a "normalization" constant which accounts for the knowledge regained learning about X. 2s useful for calculations

lets work through what happens if X
18 mec sured.

Ly Note that we can use bilinewity to work

147 = 10) 8 (11) + 1/2 13)) + 11> 8 (1/2 1/2 1/2 1/3)

[can always do this!

Now analysis is easy: $Pr(X=0) = \frac{1}{2} + \frac{1}{12} = \frac{7}{12}$ $Pr(X=1) = \frac{1}{12} + \frac{1}{6} + \frac{1}{6} = \frac{5}{12}$ 900d!

If we see X = 0 2) stale of => 1/2/1) +1/2/3> 7_{12} ($P_r(x=0)$) If n Sec X = 12, stale et y = 2 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ Operations on probabilistic states of joint systems 2 again, viewing as a single system makes life casion. Ly operations are represented by stochastic matrices (with nows & columns indexed by 2×1) La example

Example: X B y an bits Sifx=1 f x=1 Lo perform NOT on Y L, do nothing -> X is control -> 41s taget CNOT = (xcontrol Ytarget) = 100×001 + 101×011 + 111×101 + 110/<11/ -) if Y is control B X is target CNOT = (1000)
[x banet (000)
(100)
(100) (x baget Y control) L, check you enderstand this!

Example Liperform one of the following operations with probability 1/2 · Set Y to be equal to X · Set X to be equal to Y 00 01 10 11 -1/2 (0000) 0000) 0011 (1010) (1 ½ ½ 0 0 0 0 0 0 ½ ½ 1 1007 1007 1007 1007 1107 - 2007 1017 1007 (111 cm (101 1107 100 (111) write this in الاس الله (11) --- > 1117 Set X = Y bra-ket notation Sof Y=X

Independent operations Ly what if we act on on Y with N stachastic matrices representing the operation Is what is the stochastic matrix for the joint operation?? Love need tensor product for matrices!

Matrix tensor product

M = & Labla> < 61

N = E Bod lc><dl

MON = E E der a, se & gder

or equivalently

for all 107 \$ 14).

Cac | MON 16d) = (alm167(c/Nld)

lac><5d1

for all a, b ∈ E B c, d ∈ r.
or equivalently, the unique mutrix satisfying

MON (1470H7) = (M107)0(N147)

We also have this convention for matrices

Lin Bill --- Lin Bike Lim Bill Lim Bill

dmi Bii - dmi Bik dmis Bi, - dmis Bik dmis Bik dmis Bik dmis Bik dmis Bik

(Xim B)

 $\left(\left(\times_{n} B \right) \right)$ (Xm, B)

~~ (Xmm B)

We define lensor products of multiple metrices analogously--L, M. & & Mm ((d, ... Lm | M, O O Mm | b, -- bm) = (a/M,/b,) --- (an/Mn/bn) ¥ a,, b, e ≥, ... am, bm ∈ ≥m We can also do it recursively! Finally, tensor product is multiplicative $(M \otimes \otimes M^{\vee}) (N \otimes \otimes N^{\vee})$ $= \left(M_1 N_1\right) \otimes \left(M_n N_n\right)$ YM; BN: (for which dimensions match) Independent operations continued if Mactson X B Nactson Y 2 joint operation is MON on (x, y) NBY for states & operations tensor products represent independence! - if XBY are independently in 10>BM) 2 joint state = 1020 mm -> if react independently on XBY

2. joint operation is a tensor product

M&N

Example

25

if re apply M to X 8 NOT to Y

$$\left(\begin{array}{c}
1 & 2 \\
0 & 2
\end{array}\right) \otimes \left(\begin{array}{c}
0 & 1 \\
1 & 0
\end{array}\right) = \left(\begin{array}{c}
0 & 1 & 0 & 2 \\
1 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right)$$

Stochastic.

Note, if we only actor X, that means acting on Y with the identity

$$\begin{pmatrix} 1/2 \\ 0/2 \end{pmatrix} \otimes \begin{pmatrix} 1/2 \\ 0/1 \end{pmatrix} = \begin{pmatrix} Doit \end{pmatrix}$$